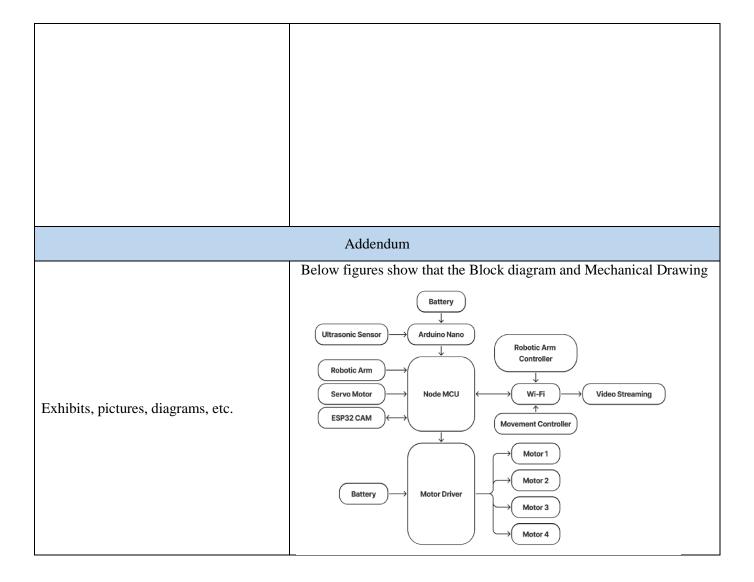
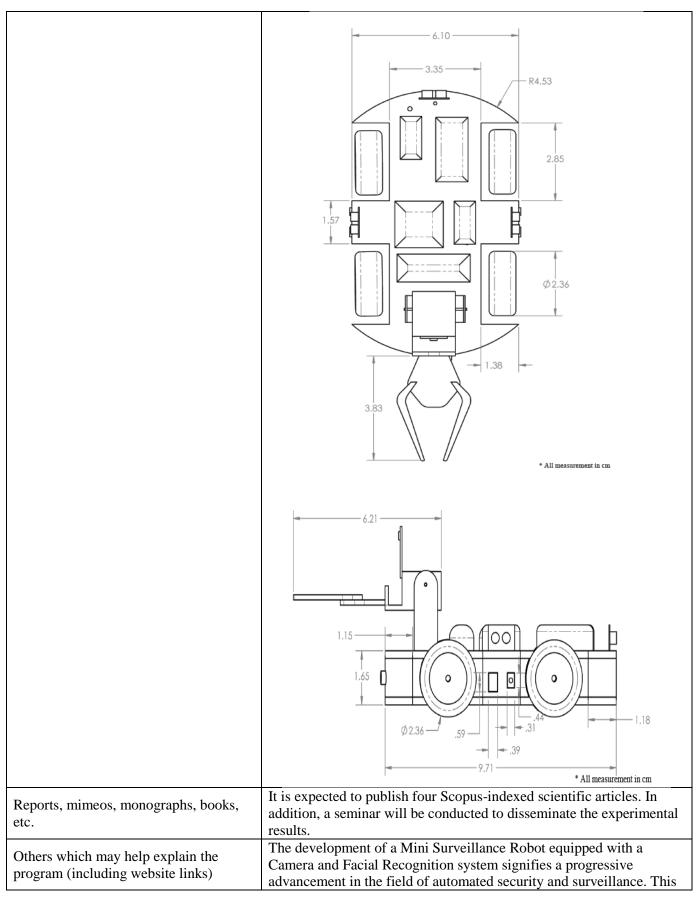
	Program Profile		
Program	Program name	Automatic Mini-Guard Rover: A Surveillance Solution with Facial Recognition	
Tiogram	Category	(Select one category from A1–A8 or B1–B8 and write it here. For example, if the program is A1: Student Support and Engagement, write 'A1'.)	

		Summaryof Program
Program Name		Automatic Mini-Guard Rover: A Surveillance Solution with Facial Recognition
Category		A3. Industrial Application B3: Innovation Technology
Abstract of Program		The Mini Surveillance Robot integrates a camera, facial recognition, and a claw mechanical gripper to provide an advanced solution for monitoring and security. This compact, autonomous robot navigates various environments, delivering real-time video feeds, identifying individuals using facial recognition algorithms, and removing obstacles from its path. Its portable and minimalist design enables deployment in confined or hard-to-reach areas, making it suitable for residential, commercial, and industrial surveillance. The intelligent system supports anomaly detection, motion tracking, and alerts, enhancing situational awareness and minimizing human intervention. Applications include home security and real-time monitoring for warehouse security and surveillance. Keywords: Facial recognition, Surveillance, Mechanical gripper, Obstacle removal & Security.
		Details of Program
		Planning
Objectives	Long-term Goals	□ Enhance the radar system into a comprehensive surveillance and safety solution for vehicles. □ Contribute to the development of intelligent transportation systems with built-in threat detection. □ Provide a scalable framework that can be adapted for military, security, and civilian applications involving autonomous vehicles and smart monitoring.
	Short-term Targets	 □ Develop a vehicle-mounted radar system capable of multi-object tracking. □ Integrate thermal monitoring and video streaming features for real-time observation. □ Implement an object identification mechanism to determine whether detected objects are harmful or
	Rationale	The increasing demand for intelligent vehicle systems highlights the need for advanced sensing technologies capable of ensuring safety and security in dynamic environments. Traditional vision-based systems often fail under poor visibility conditions such as fog, smoke, or darkness. Radar, combined with thermal imaging and real-time video streaming, offers a reliable solution for

		continuous monitoring and decision-making. This research addresses the gap by developing a vehicle-mounted radar system that not only tracks multiple objects but also identifies whether those objects pose potential harm. The integration of thermal monitoring and real-time video streaming enhances situational awareness, enabling faster and more accurate threat recognition. In the short term, the system improves road and vehicle safety by assisting drivers or autonomous platforms in identifying harmful objects. In the long term, it contributes to the development of smart surveillance systems and intelligent transportation technologies, with potential applications in both civilian and defense sectors.
	Initiator(s)	Enamul Hoq
Subject (Leader)	Champion(s)	Enamul Hoq
	Major team member(s)	Md.Shariful Islam, Ahmed Farhan, Prof.Dr.Md. Mizanur Rahman, Rezwan us Saleheen
Environment	Nature/Society	Enhanced Public Safety: Detects and tracks suspicious individuals using facial recognition in real-time. Support for Law Enforcement: Aids in criminal investigations by identifying persons of interest quickly. Remote Surveillance: Monitors sensitive or hazardous areas (e.g., military zones, disaster sites) without risking human life. Emergency Alerts: Can send real-time alerts in case of accidents or abnormal human behavior. Cost-Effective Security: Reduces the need for continuous human patrols, saving operational costs. Potential Concerns: Privacy Invasion: Continuous facial tracking may raise ethical concerns about mass surveillance. Bias in AI: Inaccurate identification due to biased or incomplete training data can lead to false positives. Job Displacement: Automation may reduce employment opportunities in the security sector.
	Industry/Market	Security and Surveillance

	T	
		 Autonomous patrolling in war zones or restricted areas
		3. Smart Cities & Urban Infrastructure
		Integration with IoT and surveillance networks
		 Public area monitoring, traffic management, and
		crowd control
		Industrial and Commercial Facilities
		 Factory floor surveillance, inventory protection
		 Reducing internal theft and unauthorized access Environmental Monitoring
		 Wildlife protection zones, nature reserves
		 Disaster-prone areas and remote weather stations
		6. Private and Residential Use
		 Home security systems for smart homes and gated
		communities
		Market Opportunities:
		Startup Potential: Affordable rover solutions can be tailored for schools,
		homes, or small factories.
		Custom AI Models: Locally trained facial recognition to suit specific
		cultural or regional demographics.
		Modular Designs: Add-ons like temperature sensors, gas detectors, or GPS
		can expand market reach
		Government Applications & Use Cases:
		National Security and Border Control
		 Patrolling restricted zones, borders, and military
		bases
		 Real-time facial recognition for identifying
		threats or wanted individuals
		2. Public Infrastructure Monitoring
		 Deployed in rail stations, airports, and ports for
		crowd surveillance
		 Useful in managing protests, political gatherings,
		and public safety operations
	Citinan/Carrent	3. Smart City Integration
	Citizen/Government	 Part of smart city projects under Digital
		Bangladesh or similar e-Governance initiatives
		globally
		 Rovers can integrate with traffic control, public
		alerts, and environmental monitoring systems
		4. Disaster Response and Emergency Services
		 Government agencies can use them in flood
		zones, collapsed buildings, or chemical hazard
		areas for rescue missions
		o Equipped with sensors, they can assess danger
		zones without risking human lives


	Human resources	To develop and deploy the Automatic Mini-Guard Rover with Facial Recognition, a combination of human, financial, and technological resources is essential. The project would require a skilled team comprising a Project Manager to oversee planning and execution, AI/ML Engineers to develop and train facial recognition algorithms, Embedded and Robotics Engineers to integrate sensors and design rover mobility, and Software Developers for UI and data management systems. Additional personnel like Cybersecurity Experts, Field Operators, Quality Assurance Testers, and Legal Advisors are
Resources	Financial resources	needed to ensure secure, ethical, and regulation-compliant implementation. The total financial support required to complete this project is approximately BDT 4,50000/=
	Technological resources	Technologically, the rover will utilize platforms like Raspberry Pi, Arduino, or NVIDIA Jetson Nano for processing, along with AI libraries such as OpenCV, TensorFlow, or PyTorch. It will incorporate a high-resolution camera (possibly with night vision), ultrasonic or infrared sensors, GPS for navigation, and Wi-Fi or 4G modules for communication. The rover will be powered by a lithium-ion battery, with optional solar charging for environmental friendliness. Software will be developed in Python, C++, and ROS (Robot Operating System), with data stored securely in cloud platforms like AWS or Firebase.
Mechanism	Strategy (Weight/Sequence)	The strategic options must follow this execution sequence: 1. Requirement Analysis and Planning 2. Core Technology Selection 3. AI Model Development 4. Mechanical Design & Prototyping 5. System Integration 6. Testing & Validation 7. Pilot Deployment 8. Feedback & Optimization 9. Full Deployment & Market Scaling By executing these strategies in a logical and resource-optimized sequence, the project ensures both technical robustness and market viability, while addressing ethical, operational, and environmental concerns effectively.
	Organization	 □ Centralized control through NodeMCU/ESP32 as the core controller. □ Modular structure: • Vision Module – ESP32-CAM for streaming & recognition. • Sensing Module – ultrasonic for obstacle detection. • Actuation Module – robotic arm & motors. • Control & Communication Module – Wi-Fi and mobile app interface. □ Designed to support scalability and integration with other IoT systems.
	Culture	□ Addresses security and ethical responsibility in surveillance robotics (avoiding intrusive, unnecessary monitoring). □ Encourages a culture of safety and automation where robots minimize human risk exposure. □ Supports adoption in contexts like smart cities, hazardous environments, and defense while balancing privacy 【10†sourc Relay Would you like me to fill this directly into your provided table


Bangladesh, with potential collaboration from healthcare institutions. Introduction		format (Strategy, Organization, Culture under Mechanism) so you can use it in your report?
Responsible organization The program will be executed primarily by World University of Bangladesh, with potential collaboration from healthcare institutions. 1. Introduction Background and motivation Overview of the Mini-Guard Rover concept Objectives of the project 2. Literature Review / Related Work Existing security and surveillance solutions Advances in robotics, Al, 10T in security Gaps and challenges addressed by this project 3. System Design and Architecture Hardware components (sensors, motors, processors) Software components (sensors, motors, processors) Programming languages and tools used Integration of hardware and software Testing and debugging procedures Society and provacy considerations Approaches to overcome these issues Applications and Use Cases Home and office security Disaster monitoring and rescue support Potential commercial and industrial uses Impact on students (learning, skills development) Response		Doing
Bangladesh, with potential collaboration from healthcare institutions. Introduction	Launch date	February, 2025
1. Introduction Background and motivation Overview of the Mini-Guard Rover concept Objectives of the project 2. Literature Review / Related Work Existing security and surveillance solutions Advances in robotics, Al, IoT in security Gaps and challenges addressed by this project 3. System Design and Architecture Hardware components (facial recognition algorithm control system) Communication and networking setup (IoT integration) Software components (facial recognition algorithm control system) Communication and networking setup (IoT integration) Block diagrams and system flow Implementation Methodology Step-by-step development process Programming languages and tools used Integration of hardware and software Testing and debugging procedures Key Features and Innovations Autonomous navigation Real-time facial recognition Real-time facial recognition Remote monitoring and control Energy efficiency and portability Challenges and Solutions Technical difficulties encountered Cost and resource constraints Security and privacy considerations Approaches to overcome these issues Applications and Use Cases Home and office security Public surveillance and safety Disaster monitoring and rescue support Potential commercial and industrial uses Impact on students (learning, skills development)	Responsible organization	The program will be executed primarily by World University of Bangladesh, with potential collaboration from healthcare institutions.
 Prototype demonstrations Documentation and research outputs Future Work and Directions 	Program content and process	1. Introduction Background and motivation Overview of the Mini-Guard Rover concept Objectives of the project 2. Literature Review / Related Work Existing security and surveillance solutions Advances in robotics, AI, IoT in security Gaps and challenges addressed by this project 3. System Design and Architecture Hardware components (sensors, motors, processors) Software components (facial recognition algorithms, control system) Communication and networking setup (IoT integration) Block diagrams and system flow 4. Implementation Methodology Step-by-step development process Programming languages and tools used Integration of hardware and software Testing and debugging procedures 5. Key Features and Innovations Autonomous navigation Real-time facial recognition Remote monitoring and control Energy efficiency and portability 6. Challenges and Solutions Technical difficulties encountered Cost and resource constraints Security and privacy considerations Approaches to overcome these issues 7. Applications and Use Cases Home and office security Public surveillance and safety Disaster monitoring and rescue support Potential commercial and industrial uses 8. Impacts and Benefits Impact on students (learning, skills development) Impact on professors and university (research, curriculum) Responses from industry, government, and market Societal and technological benefits Measurable Outputs Performance metrics (accuracy, range, battery life) Prototype demonstrations Documentation and research outputs Planned simulation studies and sustainability impact analysis

	11
	 Alignment with Sustainable Development Goals (SDGs) 11. Conclusion
	Summary of achievements
	 Final remarks on significance and potential
	12. References
	 Cited research papers, articles, and resources
	1. Autonomous Patrolling:
	 Rover moves independently using motors and
	sensors.
	 Obstacle detection ensures safe navigation.
	2. Motion Detection:
	 PIR sensor or camera-based motion detection
	triggers surveillance mode.
	3. Real-time Face Capture:
	 Captures images/videos of detected intruders
	using camera module.
	4. Facial Recognition System:
	 Uses AI to detect and recognize faces.
	 Compares with pre-saved database of authorized
	persons.
	5. Decision Making:
	$ ○ $ Matched Face $ \rightarrow $ Logs entry, no alert.
	 Unknown Face → Triggers alert (buzzer, SMS,
	email, etc.).
	6. Live Alerts & Logging:
	 Sends real-time alerts to admin/security team.
Key highlights of the content/process	 Maintains log of time, image, and action taken.
	7. Energy Efficient & Portable:
	o Battery-powered mobile surveillance unit suitable
	for indoor/outdoor.
	8. Modular Design:
	 Easy to upgrade: GPS, night vision, cloud sync,
	or more cameras.
	9. Cost-Effective Security Solution:
	 Replaces manual patrol with smart AI-enabled
	automation.
	Applications
	The Automatic Mini-Guard Rover is a smart surveillance system designed for
	real-time patrolling and facial recognition. It can be used in various applications such as home security, office and industrial surveillance, school
	and campus safety, and military base monitoring. By automatically detecting
	motion and identifying individuals using AI-based facial recognition, it helps
	prevent unauthorized access and ensures safety without constant human
	intervention. This portable, battery-powered rover is ideal for sensitive zones
	like hospitals, warehouses, and event venues, offering an efficient and cost- effective alternative to manual security systems.
	checuve anomative to manual security systems.

Differences from traditional approaches	Unlike traditional security systems that rely on fixed CCTV cameras and human guards, the Automatic Mini-Guard Rover offers mobile, intelligent, and autonomous surveillance. Traditional systems often lack real-time identification or require manual monitoring, whereas this rover uses facial recognition to instantly verify individuals and raise alerts for unknown faces. It can patrol dynamically, avoid obstacles, and cover blind spots that static cameras cannot. Moreover, it reduces dependency on constant human presence, lowers operational costs, and enhances security through smart automation and real-time responses.
Progress as of today	The design of a new type of Automatic Mini-Guard Rover is finished.
Problems in implementation	Implementing the Automatic Mini-Guard Rover comes with several challenges. One major issue is the high initial cost , as components like AI-enabled processors (e.g., Raspberry Pi or Jetson Nano), quality cameras, sensors, and batteries can be expensive. Developing a reliable facial recognition system also requires a well-trained dataset and processing power. Additionally, integration of hardware and software demands technical expertise, and real-time operation may face issues such as connectivity problems , power limitations , and environmental interference (e.g., poor lighting or rough terrain). Ensuring data security and maintaining system updates are also ongoing concerns., supercomputers, etc., which are not cost-effective for a single project.
Approaches to solve the problems	To overcome the high cost, low-cost alternatives like Raspberry Pi Zero or open-source components can be used, and parts may be sourced locally or through educational grants. For facial recognition, pre-trained lightweight models (e.g., MobileNet) can reduce computational requirements and improve speed. Modular design allows gradual upgrades, spreading out expenses. Power issues can be managed with efficient battery management systems or solar charging. Software complexity can be reduced using open-source libraries like OpenCV and TensorFlow. Finally, involving students or tech communities can lower development costs and improve system reliability through collaboration and testing.
Completion date, if completed	It is scheduled to be finished by the end of 2025.
	Seeing
Impacts on students	The Automatic Mini-Guard Rover project has a significant impact on students by enhancing their practical knowledge in areas like robotics, AI, IoT, and embedded systems. It encourages hands-on learning , critical thinking, and problem-solving skills by integrating hardware and software components. Students gain real-world experience in programming, circuit design, and machine learning, preparing them for careers in modern technology fields. It also promotes teamwork, project management, and innovation, as students work collaboratively to build a functional, socially relevant security solution.
Impacts on professors	Professors are satisfied with the program's progress, noting strong research outputs and effective student engagement. They value the interdisciplinary collaboration and the program's alignment with advancing healthcare innovation and SDG 3.
Impacts on university administration	The Automatic Mini-Guard Rover project offers professors opportunities to engage in innovative teaching and research by integrating emerging technologies like AI and IoT into the curriculum. It encourages interdisciplinary collaboration, enriching academic programs and fostering a culture of innovation. For the university, the

	project enhances its reputation by showcasing practical, cutting-edge student work and promoting industry-relevant skills. It also strengthens partnerships with technology sectors and attracts prospective students interested in hands-on, future-focused learning experiences.	
Responses from industry/market	The industry views the Automatic Mini-Guard Rover project as a promising innovation that aligns with growing demands for affordable, autonomous security solutions. Market stakeholders appreciate its practical application of AI, IoT, and robotics in addressing real-world surveillance challenges. The project demonstrates the potential for scalable, customizable security technology, attracting interest from startups and established companies alike. It also highlights the readiness of graduates to contribute to evolving tech sectors, encouraging industry partnerships for further development and commercialization.	
Responses from citizen/government	The government recognizes the Automatic Mini-Guard Rover project as a valuable contribution to national security and technological advancement. It supports such initiatives for promoting innovation in defense, public safety, and smart city development. Government agencies may offer funding, grants, or policy support to encourage further research and deployment of autonomous surveillance systems. The project aligns with national goals of fostering tech education, enhancing security infrastructure, and driving economic growth through emerging technologies.	
Measurable output (revenues)	Functional Prototype: A fully operational Mini-Guard Rover capable of autonomous navigation and real-time facial recognition. Accuracy Rate: Percentage of correct facial identifications during testing (e.g., 90%+ accuracy). Operational Range: Distance coverage for surveillance and communication (e.g., 100 meters). Battery Life: Duration of continuous operation on a single charge (e.g., 2-3 hours). Software Performance: Response time for image processing and alert generation (e.g., under 2 seconds). User Interface: Development of a user-friendly control dashboard or mobile app. Documentation: Complete technical reports, design schematics, and code repositories. Student Engagement: Number of students involved and hours spent on project development. Research Output: Publications, presentations, or patents resulting from the project.	
Measurable input (expenses)	The program has used an initial investment of 40,000 BDT covering hardware development, software engineering, and pilot testing.	
Cost-benefit analysis for effectiveness	A cost-benefit analysis will be done at the end of the project to understand the impact of the project on sustainable development.	
Future Planning		
Where does the project go from here?	Currently in its early stages, the project will proceed with completing experimental work followed by simulation studies. These simulations will evaluate the project's impact on sustainable development and its alignment with the United Nations Sustainable Development Goals (SDGs). This approach will help identify areas for improvement and potential real-world applications, guiding further development toward creating a socially and environmentally responsible security solution.	

compact and mobile unit integrates the capabilities of real-time video monitoring, autonomous navigation, and intelligent facial recognition algorithms, creating a versatile tool for enhancing safety in a wide range of environments—including residential areas, commercial facilities, educational institutions, and public spaces. Its core advantages lie in its ability to perform continuous surveillance, deliver instant alerts, and detect potential threats with minimal human intervention. Furthermore, the integration of AI-driven facial recognition enhances its ability to distinguish between authorized individuals and unknown entities, contributing to proactive threat management.